A Professional Dry Cleaning Company


Your Appearance IS Our Success

At Village Dry Cleaners, we don’t look good unless you look great!

Professional dry cleaning is what we do. We’ve been exceeding the dry cleaning expectations of our customers since 1991. Expertly making the styles you wear, look sharp on you. Village Dry Cleaners is a locally owned, family business that appreciates your needs, and those of our local community. We make you look professional, polished and beautiful. All at a competitive price.


Dry Cleaning Cary, dry cleaning Holly Springs


You can trust your best garments to us.

When you bring your clothing, suits, coats or dresses into Village Dry Cleaners for dry-cleaning, we’ll log them in, tag them and then begin our professional procedure to make you look great.

  • It starts with inspecting each garment for stains, damage and unique construction. If we find anything that you should be concerned about, we’ll consult with you and discuss the options.
  • Then each garment is treated to remove soiling, body sweat or unusual stains.
  • It is then placed into our environmentally safe dry cleaning system and dry cleaned with a process that insures no shrinkage or color loss.
  • Once the dry cleaning process is complete, we again inspect each garment a second time, remove any lint or loose threads and check for missing buttons.
  • Then your garment is sent it to be pressed, to your specifications, in our special steam treatment process that removes wrinkles and leaves your garments looking like new.
  • The finished product are garments that look the way you want them to look.

 Your appearance truly IS our success, because if you don’t look good, we don’t look good.


 Have you ever wondered what dry cleaning is?
After all, how do you “dry” clean fabrics?

To start, dry cleaning isn’t dry! Dry cleaning is a cleaning process for cleaning clothing and textiles using a chemical solvent, instead of water. Dry cleaning is used to clean fabrics that should not be wet cleaned due to its construction and the fabric content. Wet cleaning will cause shrinkage, color loss, loss in sheen and luster.

Unlike what its name implies, dry cleaning is not a ‘dry’ process. Clothes are soaked in a solvent other than water. At Village Cleaners, we use solvents that are environmentally safe and recyclable. Now you know. It’s not wet at all. It’s just safer for your fine garments and the planet.


Ecologically Friendly Dry Cleaning

Call Village Cleaners Today

Cary:
919-468-0199

Holly Springs:
919-567-8333


 Village Cleaners has supported our community
by supporting the following nonprofit groups:

dry cleaner, dry cleaners, dry cleaning, cleaners, dry cleaner near me   dry cleaner, dry cleaners, dry cleaning, cleaners, dry cleaner near me    dry cleaner, dry cleaners, dry cleaning, cleaners, dry cleaner near me


Village Cleaners is the perfect place to take all your dry cleaning needs. Their dry cleaning professionals will treat your clothing with expert care and use the latest eco-friendly dry cleaning processes available. They have been dry cleaning area residents fine clothing and household items since 1991. Dry cleaning is their business and they’re the best dry cleaning choice in southern Wake county. Take your dry cleaning to Village Cleaners, the dry cleaning experts.

Dry cleaning is any cleaning process for clothing and textiles using a chemical solvent other than water. It is used to clean fabrics that degrade in water, and delicate fabrics that cannot withstand the rough and tumble of a washing machine and clothes dryer. It can eliminate labor-intensive hand washing.

Unlike what its name implies, dry cleaning is not a “dry” process. Clothes are soaked in a solvent other than water. Tetrachloroethylene (perchloroethylene), which the industry calls “perc”, is the most widely used solvent. Alternative solvents are trichloroethane and petroleum spirits.

History
Modern dry cleaning’s use of non-water-based solvents to remove soil and stains from clothes was reported as early as 1855. The potential for petroleum-based solvents was recognized by French dye-works operator Jean Baptiste Jolly, who offered a new service that became known as nettoyage à sec—i.e., dry cleaning.[2][3] Flammability concerns led William Joseph Stoddard, a dry cleaner from Atlanta, to develop Stoddard solvent (white spirit) as a slightly less flammable alternative to gasoline-based solvents. The use of highly flammable petroleum solvents caused many fires and explosions, resulting in government regulation of dry cleaners. After World War I, dry cleaners began using chlorinated solvents. These solvents were much less flammable than petroleum solvents and had improved cleaning power.[citation needed]

On March 3, 1821, Thomas L. Jennings became the first African-American to be granted a United States patent. The patent was for his invention of a cleaning process called “dry scouring”, which was the precursor to dry cleaning.

Shift to tetrachloroethylene[edit]
By the mid-1930s, the dry cleaning industry had adopted tetrachloroethylene (perchloroethylene), or PCE for short, as the solvent. It has excellent cleaning power and is nonflammable and compatible with most garments. Because it is stable, tetrachloroethylene is readily recycled.

Infrastructure

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (January 2018) (Learn how and when to remove this template message)
Traditionally, the cleaning process was carried out at centralized factories. Small, local cleaners’ shops received garments from customers, sent them to the factory, and then had them returned to the shop for collection by the customer. This cycle minimized the risk of fire or dangerous fumes created by the cleaning process. At this time, dry cleaning was carried out in two different machines—one for the cleaning process, and the second to remove the solvent from the garments.

Machines of this era were described as vented; their drying exhausts were expelled to the atmosphere, the same as many modern tumble-dryer exhausts. This not only contributed to environmental contamination but also much potentially reusable PCE was lost to the atmosphere. Much stricter controls on solvent emissions have ensured that all dry cleaning machines in the Western world are now fully enclosed, and no solvent fumes are vented to the atmosphere.[citation needed] In enclosed machines, solvent recovered during the drying process is returned condensed and distilled, so it can be reused to clean further loads or safely disposed of. The majority of modern enclosed machines also incorporate a computer-controlled drying sensor, which automatically senses when all detectable traces of PCE have been removed. This system ensures that only small amounts of PCE fumes are released at the end of the cycle.

Mechanism

Structure of cellulose, the main constituent of cotton. The many OH groups bind water, leading to swelling of the fabric and leading to wrinkling, which is minimized when these materials are treated with tetrachloroethylene and other dry cleaning solvents.
In terms of mechanism, dry cleaning selectively solubilizes stains on the article. The solvents are non-polar and tend to selectively extract compounds that cause stains. These stains would otherwise only dissolve in aqueous detergents mixtures at high temperatures, potentially damaging delicate fabrics.

Non-polar solvents are also good for some fabrics, especially natural fabrics, as the solvent does not interact with any polar groups within the fabric. Water binds to these polar groups which results in the swelling and stretching of proteins within fibers during laundry. Also, the binding of water molecules interferes with weak attractions within the fiber, resulting in the loss of the fiber’s original shape. After the laundry cycle, water molecules will dry off. However, the original shape of the fibers has already been distorted and this commonly results in shrinkage. Non-polar solvents prevent this interaction, protecting more delicate fabrics.

The usage of an effective solvent coupled with mechanical friction from tumbling effectively removes stains.

Process

A modern dry cleaning machine with touchscreen and SPS control, manufacturer EazyClean, type EC124, photo taken prior to installation

Series 3 Dry cleaning machine with PLC control, manufacturer, BÖWE Textile cleaning Germany
A dry-cleaning machine is similar to a combination of a domestic washing machine and clothes dryer. Garments are placed in the washing or extraction chamber (referred to as the ‘basket’ or ‘drum’), which constitutes the core of the machine. The washing chamber contains a horizontal, perforated drum that rotates within an outer shell. The shell holds the solvent while the rotating drum holds the garment load. The basket capacity is between about 10 and 40 kg (22 to 88 lb).

During the wash cycle, the chamber is filled approximately one-third full of solvent and begins to rotate, agitating the clothing. The solvent temperature is maintained at 30 degrees Celsius (86 degrees Fahrenheit), as a higher temperature may damage it. During the wash cycle, the solvent in the chamber (commonly known as the ‘cage’ or ‘tackle box’) is passed through a filtration chamber and then fed back into the ‘cage’. This is known as the cycle and is continued for the wash duration. The solvent is then removed and sent to a distillation unit consisting of a boiler and condenser. The condensed solvent is fed into a separator unit where any remaining water is separated from the solvent and then fed into the ‘clean solvent’ tank. The ideal flow rate is roughly 8 liters of solvent per kilogram of garments per minute, depending on the size of the machine.

Garments are also checked for foreign objects. Items such as plastic pens that may dissolve in the solvent bath, damaging the textiles. Some textile dyes are “loose” and will shed dye during solvent immersion. Fragile items, such as feather bedspreads or tasseled rugs or hangings, may be enclosed in a loose mesh bag. The density of perchloroethylene is around 1.7 g/cm3 at room temperature (70% heavier than water), and the sheer weight of absorbed solvent may cause the textile to fail under normal force during the extraction cycle unless the mesh bag provides mechanical support.

Not all stains can be removed by dry cleaning. Some need to be treated with spotting solvents — sometimes by steam jet or by soaking in special stain-remover liquids — before garments are washed or dry cleaned. Also, garments stored in soiled condition for a long time are difficult to bring back to their original color and texture.

A typical wash cycle lasts for 8–15 minutes depending on the type of garments and degree of soiling. During the first three minutes, solvent-soluble soils dissolve into the perchloroethylene and loose, insoluble soil comes off. It takes 10–12 minutes after the loose soil has come off to remove the ground-in insoluble soil from garments. Machines using hydrocarbon solvents require a wash cycle of at least 25 minutes because of the much slower rate of solvation of solvent-soluble soils. A dry cleaning surfactant “soap” may also be added.

At the end of the wash cycle, the machine starts a rinse cycle where the garment load is rinsed with freshly distilled solvent dispensed from the solvent tank. This pure solvent rinse prevents discoloration caused by soil particles being absorbed back onto the garment surface from the ‘dirty’ working solvent.

After the rinse cycle, the machine begins the extraction process, which recovers the solvent for reuse. Modern machines recover approximately 99.99% of the solvent employed. The extraction cycle begins by draining the solvent from the washing chamber and accelerating the basket to 350–450 rpm, causing much of the solvent to spin free of the fabric. Until this time, the cleaning is done in normal temperature, as the solvent is never heated in dry cleaning process. When no more solvent can be spun out, the machine starts the drying cycle.

During the drying cycle, the garments are tumbled in a stream of warm air (60–63 °C/140–145 °F) that circulates through the basket, evaporating traces of solvent left after the spin cycle. The air temperature is controlled to prevent heat damage to the garments. The exhausted warm air from the machine then passes through a chiller unit where solvent vapors are condensed and returned to the distilled solvent tank. Modern dry cleaning machines use a closed-loop system in which the chilled air is reheated and recirculated. This results in high solvent recovery rates and reduced air pollution. In the early days of dry cleaning, large amounts of perchlorethylene were vented to the atmosphere because it was regarded as cheap and believed to be harmless.

Many dry cleaners place cleaned clothes inside thin clear plastic garment bags
After the drying cycle is complete, a deodorizing (aeration) cycle cools the garments and removes further traces of solvent, by circulating cool outside air over the garments and then through a vapor recovery filter made from activated carbon and polymer resins. After the aeration cycle, the garments are clean and ready for pressing and finishing.

Solvent processing

A Firbimatic Saver Series. This machine uses activated clay filtration instead of distillation. It uses much less energy than conventional methods.
Working solvent from the washing chamber passes through several filtration steps before it is returned to the washing chamber. The first step is a button trap, which prevents small objects such as lint, fasteners, buttons, and coins from entering the solvent pump.

Over time, a thin layer of filter cake (called “muck”) accumulates on the lint filter. The muck is removed regularly (commonly once per day) and then processed to recover solvent trapped in the muck. Many machines use “spin disk filters”, which remove the muck from the filter by centrifugal force while it is back washed with solvent.

After the lint filter, the solvent passes through an absorptive cartridge filter. This filter, which contains activated clays and charcoal, removes fine insoluble soil and non-volatile residues, along with dyes from the solvent. Finally, the solvent passes through a polishing filter, which removes any soil not previously removed. The clean solvent is then returned to the working solvent tank. Cooked powder residue is the name for the waste material generated by cooking down or distilling muck. It will contain solvent, powdered filter material (diatomite), carbon, non-volatile residues, lint, dyes, grease, soils, and water. The waste sludge or solid residue from the still contains solvent, water, soils, carbon, and other non-volatile residues. Used filters are another form of waste as is waste water.

To enhance cleaning power, small amounts of detergent (0.5–1.5%) are added to the working solvent and are essential to its functionality. These detergents emulsify hydrophobic soils and keep soil from redepositing on garments. Depending on the machine’s design, either an anionic or a cationic detergent is used.

JHS Website Services – Copyright 2018